PII: S0040-4020(96)00468-1 # Reaction of Dianions of Acyclic β -Enamino Ketones with Electrophiles. $8^{(a)}$. Synthesis of Trialkylsilylenaminones and α' -Silylated β -Diketones ## Giuseppe Bartoli, Marcella Bosco Dipartimento di Chimica Organica 'A. Mangini', viale Risorgimento 4, I-40136 Bologna, Italy ## Renato Dalpozzo*, Antonio De Nino, Emma Iantorno, Antonio Tagarelli Dipartimento di Chimica, Università della Calabria, I-87030 Arcavacata di Rende (Cosenza), Italy #### Gianni Palmieri Dipartimento di Scienze Chimiche, via S. Agostino I, 1-62032 Camerino (Macerata), Italy Abstract: α' - and γ -Dianions of β -(monoalkylamino) α,β -unsaturated ketones react with trialkylchlorosilanes leading to α' - and γ -trialkylsilylenaminones. Conversely from trimethylchlorosilane, the reaction between dianions of 3-(N-isopropylamino)-1-arylbut-2-en-1-ones and t-butyldimethylchlorosilane or triisopropylchlorosilane leads to the corresponding 4-trialkylsilyl derivatives. An explanation of these findings is reported. Hydrolysis of these compounds affords the until now unknown α' silylated β -diketones. Copyright \otimes 1996 Elsevier Science Ltd In the last few years we set up the optimum conditions for the α '- and γ -dimetallation of β - (monoalkylamino) α,β -unsaturated ketones¹ (enaminones). Both dianions react with a large variety of electrophiles such as alkyl halides,¹ oxiranes,² nitriles,³ aldehydes and ketones,⁴ esters,⁵ nitroalkenes,⁶ carbon dioxide and carbonates.⁷ However, non-carbon electrophiles were not tested except in a preliminary manner. In our previous paper, we reported that arylenaminones react with trimethylchlorosilane in the presence of an excess of base to give arylalkynyl ketones, while silylated enaminones are not isolable. In this paper we report that the silylation of enaminones is feasible and that by hydrolysis of the obtained silylated derivatives the until now unknown α' -silylated 1,3-diketones have been prepared. #### **Results and Discussion** The reaction of 1-phenyl-3-(N-isopropylamino)but-2-en-1-one (1a) with two equivalents of lithium 2,2,6,6-tetramethylpiperidide (LTMP)⁷ followed by the addition of t-butyldimethylchlorosilane (3a) or triisopropylchlorosilane (3b) led to the corresponding γ -silylated products 4aa and 4ab in very good yields (Table 1, entries 1,2). Arylalkynylketones or imines were never detected. *N*-Phenyl (1b) or α -substituted (1c) arylenaminones can be silvlated at the γ -position with trimethylchlorosilane (3c) (Table 1, entries 4,5), although compound 4bc cannot be isolated since it gives starting enaminone when heated or chromatographed on silica gel. However, ¹H-NMR analysis of the crude 9180 G. BARTOLI et al. mixture revealed almost exclusively signals belonging to 1b and 4bc. It should be noted that carrying out the reaction of 2a with 3c starting enaminone was recovered in 94% yield.8 Good yields of products 4 were obtained, when γ-dianions of 4-(N-monoalkylamino)pent-3-en-2-one 2d-f, prepared by reaction of enaminones 1d-f with two equivalents of methyllithium in the presence of tetramethylethylenediamine (TMEDA), were allowed to react with 3a (Table 1, entries 6,7,8). Attempts to synthesize both the corresponding γ-trimethylsilyl derivatives **4ec-fc** and pent-3-yn-2-one were unsuccessful, the starting enaminone being the sole isolable and detectable product. On the other hand, 4-(N-phenylamino)-5-(trimethylsilyl)pent-3-en-2-one was isolated and characterized, but it could not be stored since it rapidly decomposed. These findings demonstrate that γ-silvlation of enaminones is feasible so that silvlated intermediates can be supposed to be involved in the reaction pathway of α,β -alkynyl ketone formation as depicted in the scheme. Table 1- Reaction of γ-Dianions 2 of Enaminones with Trialkylchlorosilanes 3 at Room Temperature, Followed by Quenching with Saturated Ammonium Chloride. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | | |-------------------------------------------------------|------------|----|--------------------|-------------------|----------------------------------|--------------|---------|-----------------|--|--|--|--| | 1 | i | | | 2 | 4 | | | | | | | | | Entry | Dianion | R | R ¹ | \mathbb{R}^2 | R ⁴ ₃ SiCl | R^4_3 | Product | Yielda (%) | | | | | | 1 | 2a | Ph | Н | Pri | 3a | Bu^tMe_2 | 4aa | 70 | | | | | | 2 | 2a | Ph | Н | $\mathbf{Pr^{i}}$ | 3b | Pr^{i}_{3} | 4ab | 97 | | | | | | 3 | 2a | Ph | Н | $\mathbf{Pr^{i}}$ | 3c | Me_3 | 4ac | 0p | | | | | | 4 | 2b | Ph | Н | Ph | 3c | Me_3 | 4bc | 48° | | | | | | 5 | 2c | Ph | CH ₂ Ph | $\mathbf{Pr^{i}}$ | 3c | Me_3 | 4cc | 68 ^d | | | | | | 6 | 2d | Me | Н | Me | 3a | Bu^tMe_2 | 4da | 77 | | | | | | 7 | 2e | Me | Н | Pr^{i} | 3a | Bu^tMe_2 | 4ea | 71 | | | | | | 8 | 2 f | Me | H | Ph | 3a | Bu^tMe_2 | 4fa | 85 | | | | | | 9 | 2f | Me | H | Ph | 3c | Me_3 | 4fc | 46 ^e | | | | | a Calculated on pure isolated products. b Starting enaminone 1a was recovered in 94% yield.8 ^c Estimated on NMR signals on the crude reaction mixture. d About 18% of starting material 1c was recovered. e 72% GC-yield before isolation. After column chromatography 25% of starting material 1f was recovered. In the scheme, dianion 2 is shown in its more stable conformation as derived from *ab initio* calculations. It is reasonable to assume that phenyl and very bulky nitrogen substituents hamper the rotation around the pseudo-single C2-C3 bond, avoiding the oxygen and silicon atoms facing each other, so stabilising the γ -silylated product. In fact, the same nitrogen substituents affect the α - γ equilibration which occurs with a similar mechanism. In this conformation the silylated monoanion undergoes bond-switching from the γ -silylated 5 to the O-silylated isomer 6. It is noteworthy that β -diketone monosilylenolethers exhibit a similar bond-switching with a calculated activation energy of ca. 55 kJ mol^{-1,9} Although the present rearrangement involves oxygen and carbon atoms rather than two oxygen atoms, the termini of the rearrangement are facing each other. The equilibrium between 5 and 6 isomers seems to be shifted toward the C-silylated form, especially when the silicon atom is very hindered. The reaction of 2-benzyl-1-phenyl-3-(N-isopropylamino)but-2-en-1-one (1c) with trimethylchlorosilane can be assumed as a photo of this equilibrium. 18% Yield of starting enaminone is recovered also in the presence of five equivalents of LTMP. This finding cannot be explained in terms of transmetalation from dianion 2c to silylated monoanion 5cc, since the excess of base should give dianion 2c again. Therefore the presence of starting material can be only accounted for by hydrolysis of the O-silylated product 6cc. Bond-switching might occur also in compound 4 and from hydrolysis of the O-silylated product during the quenching of the reaction mixture, the starting material can be restored, so justifying its recovery from workup of the reactions. If excess base is present, a silanol elimination can be promoted from 6 to alkynyl monoanion 7 which hydrolyses to alkynylketone after acidic workup of the reaction mixture. When both an alkyl substituent is present in the α position, and bulky N-substituents prevent bond-switching, no alkynylderivatives are observed and the corresponding γ -silylated products are detected. The role of the aryl substituents on the C-1 atom is obscure, but probably they can better stabilize the incipient positive charge than an alkyl group. #### Scheme 9182 Table 2- Reaction of α '-Dianions 9 of Enaminones with Trialkylchlorosilanes 3 at Room Temperature, Followed by Quenching with Saturated Ammonium Chloride. Table 3- Hydrolysis of Silylated Enaminones with 2N Hydrochloric Acid. | Entry | Enaminone | R ₃ SiCl | R | Diketone | Yield (%)a | |-------|-----------|---------------------|------------------------------------|----------|------------| | 1 | 1e | 3a | Bu ^t Me ₂ Si | 11a | 66 | | 2 | 1f | 3a | Bu ^t Me ₂ Si | 11a | 78 | | 3 | 1e | 3c | H | 11b | 72 | a Calculated on pure isolated products Product 4fc is stable for some hours after isolation, although it partially decomposes during chromatographic separation. On the other hand, product 4bc cannot be isolated and its presence in the reaction mixture was proved by TLC and NMR analyses on the crude. The reaction was then extended to the α' dianions, generated under the optimum conditions for their generation. The reaction proceeds smoothly and the corresponding α' -silylated products 10 are obtained in good to high yields (Table 2). ^a Calculated on pure isolated products. It is noteworthy that the α '-trimethylsilylenaminones are isolable and stable under 0 °C for months, conversely from the corresponding γ - derivatives. The enamino function was submitted to hydrolysis under the reported conditions. ¹⁰ All the reactions were carried out both on isolated products 4 and 10 and on the reaction mixture. Following the reaction course by GC-MS analysis we found that after 4 h the γ -isomers are hydrolyzed to starting enaminones with every silyl substituent. This finding confirms a lower stability of γ -isomers. On the other hand, the α '-t-butyldimethylsilyl derivatives afford the corresponding unknown α '-silylated enaminones, while the trimethylsilyl group is hydrolyzed (table 3). In conclusion, a new class of silylated β -diketones and enaminones is now available. They can be valuable intermediates for the synthesis of α',β' -unsaturated enaminones and diketones, *via* their dianion reaction with aldehydes or ketones, which cannot be prepared by reaction of enaminones with carbonyl derivatives⁴. Moreover they can be used to prepare γ,δ -unsaturated ketones by cerium mediated addition¹¹ of alkyl lithium followed by Peterson elimination. Studies are in progress to explore these synthetic applications. ### **Experimental** ¹H-NMR spectra were recorded with a Bruker AW80 instrument or with a Varian Gemini 200 instrument. Chemical shifts are given in p.p.m. from Me4Si as external standard in CDCl₃ solutions. Coupling constants are given in Hertz. IR spectra were recorded with a Perkin-Elmer FTIR paragon 1000 PC spectrometer. EI-MS were recorded with a workstation formed by an HP-5890 gaschromatograph equipped with a methyl silicone capillary column and by an HP 5975 mass detector. Melting points are uncorrected and were determined with a Kofler apparatus. THF was dried by refluxing over sodium wire until the blue colour of benzophenone ketyl persisted and then distilling into a dry receiver under a nitrogen atmosphere. Enaminones **1a-f,i** were prepared according to Singh and Tandon's procedure. ¹² Enaminones **1g,h** were prepared from **1a** and the appropriate halide according to our procedure. ¹ LTMP was prepared from equimolecular amounts of butyllithium and 2,2,6,6-tetramethylpiperidine in THF at 0 °C. Dianions **2** and **9** were prepared as previously described. ¹ 3-Benzyl-2,4-pentandione and 2-benzyl-1-phenyl-1-butanone, were prepared according to literature ¹³. All reactions were performed in a 5 mmol scale. Reaction of dianions 2 with trialkylchlorosilanes 3. To a magnetically stirred THF solution of dianion 2 (1 M) a twofold amount of trialkylchlorosilane was added dropwise at 0 °C. After 30 min, the reaction was quenched with an ammonium chloride saturated aqueous solution, extracted with Et₂O, dried over sodium sulphate, evaporated under reduced pressure and submitted to a chromatographic separation on silica gel (hexane: ethyl acetate 95:5 as eluant). The following products were isolated. Yields are reported in table 1. 3-(N-isopropylamino)-1-phenyl-4-(tertbutyldimethylsilyl)but-2-en-1-one **4aa.** mp 87-88 °C. $\delta_{\rm H}$ (CDCl₃) 0.10 (s, 6H, Me₂Si); 0.95 (s, 9H, Me₃C); 1.30 (d, J=6.4, 6H, Me₂CH); 1.91 (s, 2H, CH₂Si); 3.70 (dhept, 1H, CHNH); 5.48 (s, 1H, CH=); 7.38 (m, 3H, ArH); 7.85 (m, 2H ArH), 11.75 (brd, J=8, 1H, NH). IR (KBr) $\nu_{\rm max}$ 1252 (CSi) cm⁻¹. m/z (%) 317 (M⁺, 29), 316 (100), 274 (17), 218 (11), 202 (4), 73 (20), 42 (10). Anal calcd for C₁₉H₃₁NOSi C, 71.9; H, 9.8; N, 4.4. Found C, 71.9; H, 9.7; N, 4.5%. 3-(N-isopropylamino)-1-phenyl-4-(triisopropylsilyl)but-2-en-1-one **4ab.** Oil. $\delta_{\rm H}$ (CDCl₃) 1.03 (m, 18H, Me₂CHSi); 1.11 (m, 3H, CHSi); 1.28 (d, J=6.4, 6H, Me₂CHN); 2.08 (s, 2H, CH₂Si); 3.79 (dhept, 1H, CHNH); 5.60 (s, 1H, CH=); 7.37 (m, 3H, ArH); 7.84 (m, 2H, ArH); 11.43 (brd, J=8.7, 1H, NH). m/z (%) 359 (M⁺, 31), 358 (110), 316 (22), 274 (34), 207 (14), 188 (16), 115 (10), 83 (38), 73 (18), 59 (28), 42 (36). Anal calcd for C₂₂H₃₇NOSi C, 73.5; H, 10.4; N, 3.9. Found C, 73.7; H, 10.3; N, 3.9%. 3-(N-phenylamino)-1-phenyl-4-(trimethylsilyl)but-2-en-1-one **4bc.** Not isolable. δ_H (CDCl₃) 0.03 (s, 9H, Me₃Si); 2.05 (s, 2H, CH₂Si); 5.75 (s, 1H, CH=); 7.20-7.50 and 7.80-8.00 (m, 8H+2H, ArH); 13.40 (brs, 1H, NH). 2-benzyl-3-(N-isopropylamino)-1-phenyl-4-(trimethylsilyl)but-2-en-1-one **4cc.** Oil. $\delta_{\rm H}$ (CDCl₃) 0.20 (s, 9H, Me₃Si); 1.47 (d, J= 6.5, 6H, Me₂CHN); 2.08 (s, 2H, CH₂Si); 2.90-3.10 (AB, 2H, CH₂Ph); 3.98 (dhept, 1H, CHNH); 7.20-7.50 (m, 10H, ArH); 13.20 (brd, J= 10.5, 1H, NH). IR (film) $\nu_{\rm max}$ 1249 (CSi) cm⁻¹. m/z (%) 365 (M⁺, 3), 322 (12), 105 (10), 84 (77), 73 (31), 42 (100). Anal calcd for C₂₃H₃₁NOSi C, 75.6; H, 8.6; N, 3.8. Found C, 75.7; H, 8.5; N, 3.9%. 4-(N-methylamino)-5-(tertbutyldimethylsilyl)pent-3-en-2-one **4da**. Oil. $\delta_{\rm H}$ (CDCl₃) 0.03 (s, 6H, Me₂Si); 0.86 (s, 9H, Me₃C); 1.86 (s, 2H, CH₂Si); 1.94 (s, 3H, MeCO); 2.88 (d, J=5.25, 3H, MeNH); 4.93 (s, 1H, CH=); 10.70 (brq, 1H, NH). IR (film) $\nu_{\rm max}$ 1250 (CSi) cm⁻¹. m/z (%) 227 (M⁺, 1), 212 (14), 170 (21), 156 (100), 73 (18), 56 (24). Anal calcd for C₁₂H₂₅NOSi C, 63.4; H, 11.1; N, 6.2. Found C, 63.2; H, 11.1; N, 6.1%. 4-(N-isopropylamino)-5-(tertbutyldimethylsilyl)pent-3-en-2-one **4ea**. Oil. $\delta_{\rm H}$ (CDCl₃) 0.03 (s, 6H, Me₂Si); 0.86 (s, 9H, Me₃C); 1.17 (d, J=6.4, 6H, Me₂CH); 1.89 (s, 2H, CH₂Si); 1.93 (s, 3H, MeCO); 3.70 (dhept, 1H, CHNH); 4.85 (s, 1H, CH=); 10.80 (brd, 1H, NH). IR (film) $\nu_{\rm max}$ 1254 (CSi) cm⁻¹. m/z (%) 255 (M⁺, 1), 240 (16), 156 (100), 73 (20), 42 (11). Anal calcd for C₁₄H₂₉NOSi C, 65.8; H, 11.4; N, 5.5. Found C, 66.0; H, 11.3; N, 5.5%. 4-(N-phenylamino)-5-(tertbutyldimethylsilyl)pent-3-en-2-one **4fa.** Oil. δ_H (CDCl₃) 0.08 (s, 6H, Me₂Si); 0.90 (s, 9H, Me₃C); 1.98 (s, 3H, MeCO); 2.01 (s, 2H, CH₂Si); 5.03 (s, 1H, CH=); 7.00-7.40 (m, 5H, ArH); 12.38 (brs, 1H, NH). IR (film) ν_{max} 1255 (CSi) cm⁻¹. m/z (%) 289 (M⁺, 17), 274 (31), 232 (88), 218 (15), 198 (11), 156 (91), 141 (100), 117 (64), 77 (58), 75 (67). Anal calcd for C₁₇H₂₇NOSi C, 70.5; H, 9.4; N, 4.8. Found C, 70.6; H, 9.3; N, 4.7%. 4-(N-phenylamino)-5-(trimethylsilyl)pent-3-en-2-one **4fc.** Oil. δ_H (CDCl₃) 0.10 (s, 9H, Me₃Si); 1.98 (s, 3H, MeCO); 2.03 (s, 2H, CH₂Si); 5.01 (s, 1H, CH=); 7.00-7.40 (m, 5H, ArH); 12.40 (brs, 1H, NH). IR (film) ν_{max} 1251 (CSi) cm⁻¹. m/z (%) 247 (M⁺, 54), 232 (78), 175 (7), 156 (48), 132 (12), 118 (29), 73 (100). Anal calcd for C₁₄H₂₁NOSi C, 68.0; H, 8.6; N, 5.7. Found C, 67.9; H, 8.6; N, 5.7%. #### Reaction of dianions 9 with trialkylchlorosilanes 3. To a magnetically stirred THF solution of dianion 9 (1 M) a twofold amount of trialkylchlorosilane was added dropwise at 0 °C. After 30 min, the reaction was quenched with an ammonium chloride saturated aqueous solution, extracted with Et₂O, dried over sodium sulphate, evaporated under reduced pressure and submitted to a chromatographic separation on silica gel (hexane: ethyl acetate 95:5 as eluant). The following products were isolated. Yields are reported in table 2. 4-(N-isopropylamino)-1-(tertbutyldimethylsilyl)pent-3-en-2-one **10ea**. Oil. $\delta_{\rm H}$ (CDCl₃) 0.05 (s, 6H, Me₂Si); 0.84 (s, 9H, Me₃C); 1.16 (d, J=6.4, 6H, Me₂CH); 1.85 (s, 2H, CH₂CO); 1.87 (s, 3H, 5-Me); 3,70 (dhept, 1H, CHNH); 4.71 (s, 1H; CH=); 10.56 (d, J=6.6; 1H; NH). IR (film) $\nu_{\rm max}$ 1253 (CSi) cm⁻¹. m/z (%) 255 (M⁺, 2), 198 (100), 156 (81), 124 (42), 73 (42), 42 (58). Anal calcd for C₁₄H₂₉NOSi C, 65.8; H, 11.4; N, 5.5. Found C, 65.9; H, 11.3; N, 5.5%. 4-(N-isopropylamino)-1-(trimethylsilyl)pent-3-en-2-one 10ec. Oil. $\delta_{\rm H}$ (CDCl₃) 0.04 (s, 9H, Me₃Si); 1.16 (d, J=6.4, 6H, Me₂CH); 1.87 (s, 2H, CH₂CO); 1.88 (s, 3H, 5-Me); 3.65 (dhept, 1H, CHNH); 4.70 (s, 1H, CH=); 10.54 (brd, J=6.6, 1H, NH). IR (film) $\nu_{\rm max}$ 1245 (CSi) cm⁻¹. m/z (%) 213 (M⁺, 29), 198 (51), 156 (37), 126 (61), 108 (29), 98 (28), 84 (38), 73 (84), 58 (19), 42 (100). Anal calcd for C₁₁H₂₃NOSi C, 62.0; H, 10.9; N, 6.6. Found C, 61.9; H, 11.0; N, 6.5%. 4-(N-phenylamino)-1-(tertbutyldimethylsilyl)pent-3-en-2-one **10fa**. Oil. $\delta_{\rm H}$ (CDCl₃) 0.07 (s, 6H, Me₂Si); 0.89 (s, 9H, Me₃C); 1.99 (s, 3H, 5-Me); 2.01 (s, 2H, CH₂Si); 5.03 (s, 1H, CH=); 7.00-7.40 (m, 5H, ArH); 12.35 (brs, 1H, NH). IR (film) $v_{\rm max}$ 1250 (CSi) cm⁻¹. m/z (%) 289 (M⁺, 5), 232 (41), 156 (76), 141 (98), 118 (44), 77 (85), 73 (100), 43 (30). Anal calcd for C₁₇H₂₇NOSi C, 70.5; H, 9.4; N, 4.8. Found C, 70.4; H, 9.5; N, 4.8%. 4-(N-phenylamino)-1-(trimethylsilyl)pent-3-en-2-one **10fc**. Oil. δ_H (CDCl₃) 0.10 (s, 9H, Me₃Si); 1.99 (s, 3H, 5-Me); 2.03 (s, 2H, CH₂Si); 5.01 (s, 1H, CH=); 7.00-7.40 (m, 5H, ArH); 12.35 (brs, 1H, NH). IR (film) ν_{max} 1258 (CSi) cm⁻¹. m/z (%) 247 (M⁺, 7), 228 (11), 156 (11), 118 (12), 77 (30), 73 (100), 45 (28), 43 (13). Anal calcd for C₁₄H₂₁NOSi C, 68.0; H, 8.6; N, 5.7. Found C, 68.2; H, 8.6; N, 5.6%. 4-(N-phenylamino)-1-(trimethylsilyl)non-3-en-2-one **10gc**. Oil. δ_H (CDCl₃) 0.00 (s, 9H, Me₃Si); 0,70 (t, 3H, J= 7, MeCH₂); 1.07-1.10 (m, 4H); 1.25-1.35 (m, 2H); 1.93 (s, 2H, CH₂Si); 2.15 (t, 2H, J= 7.5, CH₂C=); 4.91 (s, 1H, CH=); 6.95-7.30 (m, 5H, ArH); 12.20 (brs, 1H, NH). IR (film) ν_{max} 1267 (CSi) cm⁻¹. m/z (%) 303 (M+, 12), 288 (31), 260 (43), 247 (42), 232 (67), 211 (23), 156 (28), 77 (27), 73 (100), 43 (24). Anal calcd for C₁₈H₂₉NOSi C, 71.3; H, 9.6; N, 4.6. Found C, 71.1; H, 9.5; N, 4.7%. 2-(N-phenylamino)-5-(trimethylsilyl)non-2-en-4-one **10hc**. Oil. $\delta_{\rm H}$ (CDCl₃) 0.00 (s, 9H, Me₃Si); 0.81 (t, 3H, J= 7, MeCH₂); 1.10-1.35 (m, 6H); 1.90-2.01 (m, 1H, CHSi); 1.96 (s, 3H, 1-Me); 4.97 (s, 1H, CH=); 7.00-7.30 (m, 5H, ArH); 12.45 (brs, 1H, NH). IR (film) $\nu_{\rm max}$ 1263 (CSi) cm⁻¹. m/z (%) 303 (M⁺, 19), 288 (14), 260 (100), 211 (49), 160 (33), 118 (66), 77 (54), 73 (80), 43 (18). Anal calcd for C₁₈H₂₉NOSi C, 71.3; H, 9.6; N, 4.6. Found C, 71.5; H, 9.5; N, 4.6%. Reaction of dianions 2 and 9 with trialkylchlorosilanes 3 followed by hydrolysis of the enamino function. To a magnetically stirred THF solution of dianions 2a and 2e (1 M) a twofold amount of 3a was added dropwise at 0 °C. After 30 min, the reaction was quenched with 20 mL of 2 N hydrochloric acid and allowed to stir at room temperature. Every 30 min, reaction mixture samples were submitted to GC-MS analysis and the peak of products 4aa and 4ea decreased while peaks of enaminones 1a and 1e increased. To a magnetically stirred THF solution of dianions **9e** and **9f** (1 M) a twofold amount of **3a** was added dropwise at 0 °C. After 30 min, the reaction was quenched with 20 mL of 2 N hydrochloric acid and allowed to stir at room temperature for 4 h, neutralized with solid sodium carbonate, extracted with Et₂O, dried over sodium sulphate, evaporated under reduced pressure and submitted to a chromatographic separation on silica gel (hexane: ethyl acetate 95:5 as eluant). Yields are reported in table 3. *1-(tertbutyldimethylsilyl)-4-hydroxy-3-penten-2-one* **11a**. Oil. keto:enol 1:9.6. δ_H (CDCl₃) 0.05 (s, 9H, Me₂Si); 0.90 (s, 9H, Me₃C); 1.93 (s, 2H, CH₂Si enol); 1.99 (s, 3H, 5-Me enol); 2.24 (s, 3H, 5-Me keto); 2.30 (s, 2H, CH₂Si keto); 3.52 (s, 2H, COCH₂CO); 5.35 (s, 1H, CH=); 12.05 (brs, 1H, OH). IR (film) ν_{max} 1254 (CSi) cm⁻¹. m/z (%) 199 (M⁺-15, 2), 157 (77), 139 (11), 114 (15), 75 (100); 43 (26). Anal calcd for C₁₁H₂₂O₂Si C, 61.6; H, 10.3. Found C, 61.5; H, 10.4%. Under the same experimental conditions the reaction between 9e and 3c led to 2,4-pentandione which was recognized by comparison with an authentic sample. #### References and Notes - a. Part 7: see ref. 7 - 1. Bartoli, G.; Bosco, M.; Dalpozzo, R.; Guerra, M.; Cimarelli, C.; Palmieri, G. J. Chem. Soc. Perkin Trans 2, 1992, 649. - 2. Bartoli, G.; Bosco, M.; Cimarelli, C.; Dalpozzo, R.; Palmieri, G. J. Chem. Soc. Perkin Trans I, 1992, 2095. - 3. Bartoli, G.; Bosco, M.; Cimarelli, C.; Dalpozzo, R.; De Munno, G.; Guercio, G.; Palmieri, G. J. Org. Chem., 1992, 57, 6020. - 4. Bartoli, G.; Bosco, M.; Cimarelli, C.; Dalpozzo, R. Tetrahedron, 1993, 49, 2521. - 5. Bartoli, G.; Bosco, M.; Cimarelli, C.; Dalpozzo, R.; Guercio, G.; Palmieri, G. J. Chem. Soc. Perkin Trans I., 1993, 2081 - 6. Bartoli, G.; Bosco, M.; Dalpozzo, R.; De Nino, A.; Palmieri, G. Tetrahedron, 1994, 50, 9831. - 7. Bartoli, G.; Bosco, M.; Dalpozzo, R.; De Nino, A.; Guerrieri, A.; Iantorno, E.; Palmieri, G. Gazz. Chim. It., 1996, 126, 25. - 8. Bartoli, G.; Bosco, M.; Cimarelli, C.; Dalpozzo, R.; Palmieri, G. Tetrahedron Lett., 1991, 32, 7091 - (a) Hassner, A.; Soderquist, J.A. J. Organometal. Chem., 1977, 131, C1. (b) Soderquist, J.A.; Hassner, A. J. Am. Chem. Soc., 1980, 102, 1577; (c) Clinet, J.C.; Linstrumelle, G. Tetrahedron Lett., 1980, 3987. (d) Yakamoto, K.; Suzuki, S.; Tsuji, J. Tetrahedron Lett., 1980, 1653. - 10 (a) Bartoli, G.; Cimarelli, C.; Palmieri, G.; Rafaiani, G. Tetrahedron: Asymmetry, 1992, 3, 719; (b) Bartoli, G.; Bosco, M.; Cimarelli, C.; Dalpozzo, R.; De Munno, G.; Palmieri, G. Tetrahedron: Asymmetry, 1993,4, 1651. - 11. Bartoli, G.; Cimarelli, C.; Marcantoni, E.; Palmieri, G.; Petrini, M. J. Chem. Soc., Chem. Commun., 1994, 715. - 12. Singh, R. V.; Tandom, J. P. J. Prakt. Chem., 1979, 321, 151. - 13 Johnson, A.W.; Markham, E.; Price, R. Org. Syntheses, 1962, 42, 75. (Received in UK 11 April 1996; revised 15 May 1996; accepted 16 May 1996)